Investigating Cancer Clusters: New Guidelines and Innovative Approaches

Dan Wartenberg, PhD
Professor and Director of Environmental Epidemiology, Department of Environmental and Occupational Medicine, UMDNJ—Robert Wood Johnson Medical School
Piscataway, NJ 08854

Research supported by:
• 1 U19 EH000102, From NCEH, Centers for Disease Control
• U50/ATU272387 From ATSDR, Centers for Disease Control
• P30ES005022, From NIEHS,
UMDNJ Center for Environmental Exposures and Disease
Goals of This Presentation

• **What is a cluster and why do they occur?**
 – Some examples of clusters and their frequency
 – Why are clusters difficult to study?
 • Privacy concerns; adequacy of relevant data; many etiologies
 – Why can we learn by studying clusters?
 • Identify, evaluate (etiology), remediate

• **How have health departments responded?**
 – Respond to reported anomalies
 • How have traditional approaches worked?
 – In terms of epidemiologic goals?
 – In terms of addressing community concerns?

• **What are some newer approaches?**
 Proactive investigation—Surveillance
 Better data, more accurate exposures, biomonitoring
The Concept of a Cluster is very Broad
Cases DO Cluster! Some Examples

<table>
<thead>
<tr>
<th>CANCER CLUSTERS</th>
<th>DISEASE CLUSTERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Childhood Leukemia (several dozen studies since the 1950s)</td>
<td>• DBCP and male infertility (1977)</td>
</tr>
<tr>
<td>• DES and vaginal cancer (1971)</td>
<td>• Kepone and neurotoxicity, infertility (1978)</td>
</tr>
<tr>
<td>• Lymphoma (1970s)</td>
<td>• HIV/AIDS (1981)</td>
</tr>
<tr>
<td>• BSME and lung cancer (1973)</td>
<td>• Thalidomide and phocomelia (1960s)</td>
</tr>
<tr>
<td>• Vinyl chloride monomer and liver cancer (1974)</td>
<td>• football players (1987)</td>
</tr>
<tr>
<td>• Leukemia on Meadow St., CT (emfs--1980s)</td>
<td>• Legionnaires Disease and pneumonia (1976)</td>
</tr>
<tr>
<td>• Leukemia near Seascale Nuclear Facility (1980s)</td>
<td>• Minimata Disease (1950s)</td>
</tr>
<tr>
<td>• Cancer in NY Giants</td>
<td></td>
</tr>
</tbody>
</table>
What is a Disease (cancer) Cluster?

• Many definitions; for example:
 – “two or more cases occurring close together”
 – “5 cases representing at least a 5-fold increase in risk...seen by a single physician over a short period of time”
 – “occurrence of a greater than expected number of cases within a small geographic area and/or within a short period of time (i.e., 3-5 years)”

• Result: confusion and inconsistency!
A Typical Community Cluster Report

- A few to several dozen reported cases
- Cases aggregated, e.g., in space, time...
- No identified exposures
- No delineation of population at risk
- Limited demographic information of cases
- No residence history information
- No or limited surveillance data available
What Risk Factors Are Associated with Clusters?

• Common demographics (age, race, genetic)
 – genetic examples emerging (breast cancer)
• Common behavior (e.g., smoking, drinking)
• Common biological contact
 – several validated examples (Legionella, HIV)
• Common chemical exposures
 – workplace: several examples (VC, DBCP)
 – pharmaceuticals: few examples (DES, thalidomide)
 – “environment”: controversial
Woburn, MA: “A Civil Action”

- State Study (Parker and Rosen 1981)
 - 12 childhood cancers observed, 5.3 expected, \(p=0.008 \)
- Harvard study positive (1984)—controversial
 - 12 childhood leukemia cases where 5.3 expected
- New cases found after wells closed
 - MADPH study finds prenatal water exposure a risk (1996)

From DiPerna

As described in a book and A Major Motion Picture
Toms River, NJ: Reported CNS Cluster

- 1995-1996 Concern about cancer excess raised by nurse at CHOP
- Associations of prenatal exposure of female childhood leukemia with:
 - Drinking water, proximity to effluent pipeline, industrial air contaminants

From Asbury Park Press
Toms River, NJ: Investigation Details

- July 1997 State and Federal scientists begin $10 million study
- Results
 - No single risk factor identified as responsible
 - Associations of prenatal exposure with female childhood leukemia:
 - Parkway well field water: OR=5.0; 95% CI 0.8-31.2 (n=4: exp cases)
 - Ciba-Geigy ambient air: OR=6.4; 95% CI 1.1-37.8 (n=6)
 - Distance to Ciba-Geigy pipeline: OR=2.6; 95% CI 1.0-6.7 (n=11)
 - Some CNS elevations but few cases (unstable risk est.)
An Unreported Cluster
Manville, NJ

- Manville, NJ—excluding asbestos workers (Berry 1997)
 • 10-fold elevation of asbestosis in men (16 cases)
 • 20-fold elevation of asbestosis in women (8 cases)
 • UNREPORTED by community, physicians,…
What’s the Message

• Most clusters are identified by residents or physicians
• Health departments often are reluctant to investigate because of:
 – Resources required
 – Difficulty of determining etiology
 – Limited remediation possibilities
• Some likely never are reported
Why are Clusters Controversial?

Different Views of Clusters—1

Public—very concerned
 – personal tragedy
 – possible sentinel, possible prevention

Media—very newsworthy
 – human interest and tragedy
 – possible blame, politics
Why are Clusters Controversial?

Different Views of Clusters—2

Scientists—very uncertain
 - validity of etiologic inference
 - validity of statistical inference
 - reluctant to accept (study) unless certain

Government—need to be responsive
 - resource drain
 - opportunity for community education
Three modes of Cluster Response
Quataert (1999)

• **Public Health Action**
 – Reactive, empathetic, management

• **Monitoring**
 – Surveillance, early warning

• **Research Etiology**
 – Hypothesis driven, naive assumptions, seeks fundamental understanding
Responding to Cancer Cluster Reports in the US

- 1,100 to 1,650 per year
 - (Aldrich et al. 1991; Greenberg and Wartenberg 1991; Trumbo 2000)
 - Childhood leukemia is most frequent
 - Major come directly from the public
 - Reports likely biased (not data-based)

- Typical response is **FIND OUT WHY**
 - Few, if any, result in etiologic association
 - Huge drain of resources for health departments
 - Often result in much animosity from community

- Are there more effective response strategies?
 - Active surveillance → Public Health Action?
RESPONDING TO CLUSTER REPORTS

When Should We Investigate?

- Situation—among the worst
 - Region has “unusual” incidence
 - Pattern is persistent
 - Possible source of risk identified

When have we investigated clusters?

- Situation generates attention and pressure
 - Persistent residents
 - Media coverage
 - Political pressure

Is it surprising that many clusters do not provide convincing etiologic data?
Why Do I Believe It Is Important to Study Clusters?

IT IS GOOD PUBLIC HEALTH PRACTICE

• Address public concern—A Local Disease Excess
 – Clarify misconceptions—Allay unfounded concerns
 – Initiate study when concerns are well founded

• Encourage Remediation—Disease Prevention
 – Determine if situation is a sentinel of a larger problem
 – Identify unknown exposure situations

• Facilitate Scientific Discovery—Etiology
 – Identify new exposure-disease link
 – Identify new carcinogens
Revised CDC/CSTE Cluster Investigation Guidelines

• Greater recognition of community role and partnership
• More sensitive analytic tools
• Appreciation of role of surveillance/active investigation
• Greater emphasis on disease excess (SIR) rather than statistical p-value (sample size)
Revised CDC/CSTE Cluster Investigation Guidelines

• Basic 4 Step Process
 – Initial contact and response
 – Assessment
 – Determine feasibility of Conducting an epidemiologic study
 – Conduct epidemiologic study

• Ongoing communication and collaboration with community is essential
Realistic Methodologic Goals

Approach: DATA DRIVEN rather than anecdotal
- Identify high exposure/risk situations needing intervention/remediation/education
 - Changes the nature of the epidemiologic question
 - Responsive to public concerns
- For example, prioritize for epidemiologic follow up
 - Focus specific exposure-disease hypotheses
 - Identify regions most likely to yield useful and interpretable results from further study
 - Target data collection effort

"The payoff from clustering research comes from the specific hypotheses that emerge to explain the observed pattern of excess occurrence." --- Rothman (1990)
Controversy over Active Cluster Surveillance

• **Against**
 – Will identify many situations requiring investigation
 – Will not result in etiologic associations
 – Will be large drain on health department resources

• **In Favor**
 – Will identify very few situations requiring investigation
 – Will focus on most serious (unusual) situations rather than current, highly-biased “community report” approach
 • Could require presence of risk factor to trigger investigation
 – Will increase likelihood of finding etiologic association
 – By being proactive, could improve community relations

• **The Controversial Issue**
 – *How many clusters identified through surveillance would require in depth investigation?*
What Issues Would Active Surveillance Address?

Consider Childhood Cancers

• General Question:
 – *Where and in whom do childhood cancers occur?*

 Do the cases form any clusters?

• Scientific Issue:
 – *What are the major risk factors for childhood cancer?*

 Are cluster(s) associated with environmental risks?

• Policy Consideration:
 – *Would routine assessment for childhood cancer clusters be meaningful scientifically and helpful for community communication/collaboration?*

 Should we consider Active Surveillance?
Using New Opportunities: Surveillance

• Frequent evaluation of a large database
 – Evaluate locally
 – Look for changes in space, time, space-time
 – Assess persistence of pattern over time
• Combine disease data with other information
• Requires new methods
 • Cusum (Rogerson)
 • Scan (Kulldorff)
 • Others
• Prioritize and Validate

Proposal: Research Evaluation of GIS-Based Surveillance Program

It may not work, but WE NEED TO LOOK
Improved Exposure Information

- Better lab tools available all the time
- More sensitive epidemiologic tools
- Biomonitoring may offer opportunities
Some References for Clusters

Another Cluster: Fallon, NV

• **Large excess (RR~35)**
 – Summer 2000—5 cases of childhood ALL
 – By end of 2001, 15 diagnosed
 – 0.2 per year expected (population 8,300)

• **Home of Navy’s “Top Gun” Training**

• **Ideas Under Investigation**
 – Airborne jet fuel release; jet fuel pipeline leaks
 – Population mixing hypothesis (50,000 transients/year)
 – Arsenic in drinking water
 – Tungsten in the environment, cases, controls